
1

Armstrong State University
Engineering Studies

MATLAB Marina – File Input and Output Primer

Prerequisites
The File Input and Output Primer assumes knowledge of the MATLAB IDE, MATLAB help,
arithmetic operations, built in functions, scripts, variables, arrays, logic expressions, conditional
structures, iteration, functions, debugging, characters and strings, cell arrays, and structures.
Material on these topics is covered in the MATLAB Marina Introduction to MATLAB module,
MATLAB Marina Variables module, MATLAB Marina Arrays module, MATLAB Marina Logic
Expressions module, MATLAB Marina Conditional Structures module, MATLAB Marina Iteration
module, MATLAB Marina Functions module, MATLAB Marina debugging module, MATLAB
Marina Character and Strings module, MATLAB Marina Cell Arrays module, and MATLAB Marina
Structures module.

Learning Objectives
1. Be able to save and restore MATLAB workspace variables.
2. Be able to write functions and programs that read data from delimited text files and write

data to text files.
3. Be able to write functions and programs that read data from Microsoft Excel files and write

data to Microsoft Excel files.

Terms
MATLAB (.mat) file, text file, Excel file, delimiter, file input, file output

MATLAB Functions, Keywords, and Operators
load, save, dlmread, dlmwrite, csvread, csvwrite, importdata, xlsread, xlswrite

File Formats
Data files are serial input/output (I/O) streams, i.e. the data is saved or retrieved sequentially.
Data is stored as binary values (1s and 0s). How the data is interpreted depends upon the type
or format of the data file. For example, reading an ASCII text file like it is an image file will result
in garbage.

File formats are typically indicated by the file’s extension. The file extension specifies the nature
and organization of the data in the file. MATLAB has built in read and write operations for most
common types of data files. General numeric data is typically stored in one of the following
formats: Microsoft Excel file, plain text file, or text file with a delimiter such as a comma, space,
tab, or pipe (|) separating values. Some of the more commonly encountered file types and
extensions are shown in Figure 1. See MATLAB’s help for more information on the various read
and write operations.

2

File Type Extension MATLAB read/write operations
MATLAB data .mat save, load
Plain text .txt, .dat, etc. textscan, fprintf
Delimited text varies dlmread, dlmwrite
Comma separated .csv csvread, csvwrite
Excel .xls, .xlsx xlsread, xlswrite
Audio .wav wavread, wavwrite
image .bmp, .jpg, etc. imread, imwrite
XML .xml xmlread, xmlwrite
Movie .avi aviread

Figure 1, Table of Commonly Encountered File Types

Saving and Restoring MATLAB Workspace
The save and load functions allow one to save the workspace variables to a file and load
previously saved workspaces. Saving the workspace saves the variables in the workspace not
any code that generated the variables. The entire MATLAB workspace is saved by using the
save function and providing a file name to save the workspace in. Specific variables in the
workspace can be saved in a similar manner by providing which variables to save. The variable
names are preserved when saving and restoring from .mat files. Previously saved workspaces
or portions of a previously saved workspace can be loaded using the load function.

Figure 2a shows an example of using the save function to save the MATLAB workspace and
Figure 2b shows an example of using the load function to restore a MATLAB workspace.

In Figure 2a, the first save statement, saves the entire workspace (all variables)and the second
save statement saves only the three specified workspace variables (t, x, and y). in Figure 2b, the
first load statement, restores the entire workspace saved in the file workspacedata.mat,
and the second load statement will restored only the two specified variables t and x saved in
the file workspacedata.mat.

MATLAB workspace (.mat) files are binary files and not generally readable by software packages
other than MATLAB.

>> save workspacedata.mat;
>> save partialworkspacedata.mat t x y;

Figure 2a, Using save Function to Save MATLAB Workspace

>> load workspacedata.mat;
>> load workspacedata.mat t x;

Figure 2b, Using load Function to Restore MATLAB Workspace

3

Reading Numeric Data from Delimited Text Files
Text files and Microsoft Excel files are widely used for storing data. Text files and Microsoft
Excel files can be read in many commonly used software packages and thus are generally good
file type choices for distributing data.

Data in text files is commonly stored with each items’ data values along columns (one per line).
Multiple items are separated in the rows using a delimiter such as a space or comma. Numeric
data in text files may have string column and row headers. Text files are coded in ASCII and can
be read (opened) using software such as Notepad.

Consider loading automobile mileage data from a comma delimited text file and computing the
gas mileage an automobile is getting. The mileage data from the text file is shown in Figure 2a
and has the miles driven and fuel consumed separated by commas, one entry per line. The
program of Figure 2b loads the data from the text file, computes the miles per gallon for each
entry, and the average miles per gallon. The data is imported as a 7 by 2 numeric array and the
miles and fuel variables are column vectors.

The MATLAB function dlmread reads numeric data from a delimited ASCII file. Typical
delimiters are spaces, commas, tabs, and pipes (|). The MATLAB command dlmwrite can be
used to write a numeric array of data to a file. For example, the MATLAB command
dlmwrite('mpg.txt',results, '/t') would write the numeric data contained in the
array results to the text file mpg using a tab as a delimiter to separate the data. Other versions
of dlmwrite allow one to append data to an existing file, write data starting at a specific row
and column in a text file, and allowing the precision of the data to be specified. MATLAB also
has functions, csvread and csvread specifically for reading numeric data from a comma

315.0, 16.4
306.8, 15.3
262.2, 12.0
241.5, 11.8
279.1, 14.1
288.0, 14.0
251.6, 12.9
Figure 2a, Mileage Data

% read mileage data from comma delimited text file
mileageData = dlmread('mileage.txt',',');
% extract miles traveled and fuel consumed
miles = mileageData(:,1);
fuel = mileageData(:,2);
% compute mpg for each fill up and average mpg
mpg = miles./fuel;
avg_mpg = sum(miles)/sum(fuel);

Figure 2b, MATLAB Program for Importing and Processing Mileage Data

4

delimited file and writing numeric data to a comma delimited file. See MATLAB’s help on
dlmread and dlmwrite for all the optional parameters.

One must be careful when appending data to files: one must ensure that the original data is not
written over (destroyed) and that if the file will be used for input later that the new file format
is taken into account when loading the data.

Reading Data from Delimited Text Files
The MATLAB functions dlmread and csvread only work with text files containing delimited
numeric data. Many files have text strings for column and row headers. One could manually
open the text file and remove any strings before working with file, but MATLAB’s
importdata and textscan functions allow one to read in data from text files containing
numeric and string data.

The importdata function either tries to use one of the helper input functions if it can
determine the type of file or treats the file as a delimited text file if it cannot determine the
type of file. If the file helper function returns more than one nonempty result, the
importdata function combines the results into a structure array. For text files, the
importdata function expects the numeric data to be in a rectangular form and text strings to
either be above or to the left of the numeric data. Numeric data is imported as a 2D array of
real numbers and string data is imported as cell array of strings, one each for row headings,
column headings, and all the text strings.

For example, a mileage data text file with row and column headings as shown in Figure 3a could
be imported using the program of Figure 3b.

In the example of Figures 3a and 3b, the importdata function obtains two objects from the
read operation: a 7 by 2 numeric 2D array and an 8 by 3 cell array of the text strings. These
objects are combined into a structure with two fields: data for the numeric array and
textdata for the text strings, which is returned and stored in the variable data2.

date, miles, gallons
1/14/2011, 315.0, 16.4
1/22/2011, 306.8, 15.3
2/3/2011, 262.2, 12.0
2/8/2011, 241.5, 11.8
2/15/2011, 279.1, 14.1
2/25/2011, 288.0, 14.0
3/2/2011, 251.6, 12.9

Figure 3a, Mileage Data

5

Along with the file name, the importdata function takes the text file delimiter as an
argument. If the text file delimiter is not specified as one of the importdata function
parameters, MATLAB tries to determine what the delimiter for the text file is. The number of
header lines (lines containing strings) is an optional function argument of the importdata
function. If the number of header liens is specified, numeric data is read starting at line header
lines + 1. For example, numeric data would be read starting at line 2 for the statement
data2 = importdata('mileage2.txt',',',1);
When the optional header lines function parameter is specified, the structure returned by the
importdata function contains one to three cell arrays: one for the row headings, one for the
column headings, and one containing all the text strings.

For text files with mixed string and numeric data, either the textscan function or low level
text file i/o operations such as fscanf, fget1, fgets, or fread should be used instead of
importdata.

Writing Numeric Data to Delimited Text Files
The MATLAB functions dlmwrite and csvwrite allows one to save numeric data to a
delimited text file (csvwrite for comma delimited files only). The MATLAB code segment of
Figure 4a illustrates how to save the original mileage data plus an additional column of data for
the miles per gallon of each fill up. The resulting file contents are shown in Figure 4b.

The dlmwrite function takes the file name to save the data in, the 2D numeric array of data,
and an optional list of user configurable options as its function arguments. More information
about the user configurable options for dlmwrite can be found in MATLAB’s help
documentation.

% read mileage data from text file with headings
data2 = importdata('mileage2.txt',',');

% extract miles traveled and fuel consumed
miles2 = data2.data(:,1);
fuel2 = data2.data(:,2);

% compute mpg for each fill up and average mpg
mpg2 = miles2./fuel2;
avg_mpg2 = sum(miles2)/sum(fuel2);

Figure 3b, MATLAB Program for Importing and Processing Mileage Data

% save mileage and mpg numeric data in delimited text file
dlmwrite('mileageplusmpg.txt',[miles, fuel, mpg], ...

'delimiter', ',', 'precision', 4,'newline','pc');

Figure 4a, MATLAB Code Segment to Save Numeric Data to Delimited Text File

6

Loading and Saving Data from Microsoft Excel Files
Microsoft Excel files have the extension .xls (versions of Office prior to 2007) or .xlsx
(Office 2007/2010). Microsoft Excel files are binary files that are readable by most spreadsheet
software and many other software packages including MATLAB. MATLAB’s Microsoft Excel file
functions work best when the computer also has the Microsoft Excel software installed on it.
For systems that do not have Microsoft Excel software, the read and write functions operate in
BASIC mode and are limited in their operation. See MATLAB’s help for the full details of the
BASIC mode limitations.

To read data from an Excel file, one of the following three formats of xlsread is typically
used:
numbers = xlsread('grocerydatafile.xls');
[numbers, text] = xlsread('grocerydatafile.xls');
[numbers, text, raw] = xlsread('grocerydatafile.xls');
The first argument of the xlsread function is the filename to read the data from. For the first
format, only numeric data is read and an array of real numbers is returned. For the second
format, both numeric and text (string) data are read and an array of real numbers and a cell
array of strings are returned. For the third format, both numeric and text (string) data are read
and an array of real numbers a cell array of strings, and a cell array of the raw data are
returned. The xlsread function also has optional arguments for specifying selected sheets
and ranges of data.

MATLAB’s xlsread function also supports interactive Microsoft Excel file input. The
statement
data = xlsread(filename, -1);
opens the file filename in an Microsoft Excel window and allows the user to select the range
of data in the worksheet to read in. One can import an entire worksheet or a selected region of
a worksheet. This option can be used when the formatting of the data in the file is not known
beforehand. Generally automatic importing of data is preferred though.

To save data to a Microsoft Excel file, the following format of xlswrite is typically used:
xlswrite('newgrocerydatafile.xls', filedata);

315,16.4,19.21
306.8,15.3,20.05
262.2,12,21.85
241.5,11.8,20.47
279.1,14.1,19.79
288,14,20.57
251.6,12.9,19.5

Figure 4b, Saved Mileage Plus mpg Data

7

The first argument of xlswrite specifies the file to save the data to and the second argument
contains the data to save. The data to save can be stored in an array for numeric data or a cell
array for numeric and string data.

Consider loading grocery data from a Microsoft Excel file, populating a structure array of the
grocery data, computing the cost of the items and total cost, and saving the results in a new
Microsoft Excel file. Figure 5a shows the original grocery data. The MATLAB program of Figure
5b loads the grocery data from the file, extracts the grocery data and populates a structure
array, computes the costs of each item and total cost of all items, and saves the results to a new
Microsoft Excel file (Figure 5c).

Since text data along with numeric data is being saved, the data can all be stored in a cell array
or the numeric and text data can be written to the file separately. In this example, the numeric
and text data are written separately. This requires the range where the data will be written to
be specified. The text is stored in a cell array and the numeric data is stored in an array of the
same sizes as the ranges they will be written to. The column headers in the new file are a
combination of the original column headers obtained from the cell array of text data read in
from the original file and an additional column heading for the total cost of each item. The
numeric data in the new file consists of the original numeric data plus a column of data for the
total cost of each item.

The downside to specifying exact ranges for the write operation is that if the size of the data
changes, each range needs to be redone. If possible, specifying the upper left corner of where
the data should be written to is better (just specifying the upper left corner will not work for
reading data though). To write the data using one file write operation, all the data (numeric and
text string) would need to be in a cell array of the appropriate size. Figure 5d shows a code
segment that could be used to do this.

Data can also be read from ranges in Microsoft Excel files. For example, the statement
itemQuantities =
xlsread('grocerydatafile.xlsx','Sheet1','B2:B5');
will read in only the item quantities from Sheet1, column V, rows 2 through 5.

Figure 5a, Excel File of Grocery Data

8

The new grocery data could have been appended to the original grocery data file instead of
saving it to a new file. Figure 5e shows a MATLAB code segment to do this. Like with text files,
one must be careful when appending data to Microsoft Excel files: one must ensure that the
original data is not written over (destroyed) and that if the file will be used for input later that
the new file format is taken into account when loading the data.

% read grocery data from Microsoft Excel file
[numbers, text] = xlsread('grocerydatafile.xlsx');

% extract item names and column headings from text data
itemNames = text(2:end,1);
columnHeadings = text(1,:);
% extract quantity and cost per item data from number data
itemQuantities = numbers(1:end,1);
costPerItem = numbers(1:end,2);

% store data in grocery structure array
numberItems = length(itemNames);
grocery = struct('item', cell(1,numberItems), 'quantity', ...
 zeros(1,numberItems), 'costperitem', zeros(1,numberItems));
for k = 1:1:numberItems
 grocery(k) =
creategrocery(itemNames(k),itemQuantities(k),costPerItem(k));
end

% compute cost of each item and total cost of all items
itemCosts = itemQuantities.*costPerItem;
totalCost = sum(itemCosts);

% save data to excel file
% column and row headings
xlswrite('newgrocerydatafile.xlsx',columnHeadings, 'Sheet1', 'A1:C1');
xlswrite('newgrocerydatafile.xlsx',itemNames, 'Sheet1', 'A2:A5');
% original data
xlswrite('newgrocerydatafile.xlsx',itemQuantities, 'Sheet1', 'B2:B5');
xlswrite('newgrocerydatafile.xlsx',costPerItem, 'Sheet1', 'C2:C5');
% new data
xlswrite('newgrocerydatafile.xlsx',{'item costs'}, 'Sheet1', 'D1');
xlswrite('newgrocerydatafile.xlsx',itemCosts, 'Sheet1', 'D2:D5');
xlswrite('newgrocerydatafile.xlsx',{'Total cost'}, 'Sheet1', 'A8');
xlswrite('newgrocerydatafile.xlsx', totalCost, 'Sheet1', 'B8');

Figure 5b, MATLAB Program for Processing Grocery Data

9

Figure 5c, Excel File of Saved Grocery Data

% save data to excel file
dataToWrite = cell(8,4);
% row and column headings
for k = 1:1:length(columnHeadings)
 dataToWrite(1, k) = columnHeadings(k);
end
dataToWrite(1,length(columnHeadings) + 1) = {'item costs'};
for k = 1:1:length(itemNames)
 dataToWrite(k+1, 1) = itemNames(k);
end
% numeric data
for k = 1:1:length(itemNames)
 dataToWrite(k+1, 2) = {itemQuantities(k)};
 dataToWrite(k+1, 3) = {costPerItem(k)};
 dataToWrite(k+1, 4) = {itemCosts(k)};
end
% total cost
dataToWrite(length(itemNames)+ 3, 1) = {'Total cost'};
dataToWrite(length(itemNames)+ 3, 2) = {totalCost};
% write data to file
xlswrite('newgrocerydatafile.xlsx', dataToWrite, 'Sheet1', 'A1');

Figure 5d, MATLAB Code Segment to Create Cell Array of Grocery Data for File Write

xlswrite('grocerydatafile.xlsx',{'Total Cost', totalCost},
'Sheet1','A8:B8');
xlswrite('grocerydatafile.xlsx',{'item costs'}, 'Sheet1','D1');
xlswrite('grocerydatafile.xlsx', itemCosts, 'Sheet1','D2:D5');

Figure 5e, Appending Data to Original File

10

File Input for Creating the Structure Array used in the Properties of Ideal Gas Table Loop Up
In the Structures primer, a function, idealGasTableAirLookup, was developed that
looked up the ideal gas properties of air. The function arguments are a structure array
containing the ideal gas table data, a field name, and a value. The structure array was assumed
to already exist but typically it would need to be created from data read from a file.

The file format for the thermodynamics table for the ideal gas properties of air is shown in
Figure 6a. Figure 6b shows the MATLAB program used to read the data from the Microsoft Excel
file and create the structure array containing the data from the ideal gas properties table.

The data for this particular table is in sheet A22 of the file “Thermodynamics Tables SI
Units.xlsx”. The file contains many other Thermodynamics tables. The table data starts at row 4,
ends at row 125, and is spread over six columns, A through F. The first three rows include the
table title and the table variables and units.

The file data is read in to two variables data and headings. The data variable holds a 2D
array of the numeric table and the headings variable holds a 2D cell array of the string data
from the first three rows. The numeric data is extracted from the 2D numeric array and the
structure array is created using the data read from the file. The resulting structure array is
saved in a MATLAB workspace file (.mat). This is more convenient than the Microsoft Excel file
if the data is to be regularly used from MATLAB.

Figure 6a, Portion of Thermodynamics Table for Ideal Gas Properties of Air (SI Units)

11

The data from each column could also be read in individually as shown in Figure 6c. In this case
though, it is important to know the exact ranges of the data to read and if the file is altered, the
ranges may need to be updated.

% import ideal gas table for air from Microsoft Excel file
[data, headings] = xlsread('Thermodynamics Tables SI
Units.xlsx','A22');
% Column 1 is T in degrees K
Ttemp = data(:,1)';
% Column 2 is h in kJ/kh
htemp = data(:,2)';
% Column 3 is u in kJ/kg
utemp = data(:,3)';
% Column 4 is s
stemp = data(:,4)';
% Column 5 is pr
prtemp = data(:,5)';
% Column 6 is vr
vrtemp = data(:,6)';
clear data;
clear headings;

% allocate space for ideal gas table for air table
numberEntries = length(Ttemp);
idealGasTableAir = struct('T', cell(1,numberEntries), ...
 'h', cell(1,numberEntries), 'u', cell(1,numberEntries), ...
 's', cell(1,numberEntries), 'pr', cell(1,numberEntries), ...
 'vr', cell(1,numberEntries));
% populate the ideal gas table for air structure array
for k = 1:1:numberEntries
 idealGasTableAir(k).T = Ttemp(k);
 idealGasTableAir(k).h = htemp(k);
 idealGasTableAir(k).u = utemp(k);
 idealGasTableAir(k).s = stemp(k);
 idealGasTableAir(k).pr = prtemp(k);
 idealGasTableAir(k).vr = vrtemp(k);
end

% save ideal gas data structure array to MATLAB workspace file
save('idealGasTableAir.mat','idealGasTableAir');

Figure 6b, MATLAB Program to Read Ideal Gas Table Data from a Microsoft Excel File

12

Last modified Thursday, November 13, 2014

This work by Thomas Murphy is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License.

% import ideal gas table for air from Microsoft Excel file
% Column 1 is T in degrees K
Ttemp = xlsread('Thermodynamics Tables SI Units.xlsx','A22',
'A4:A125');
% Column 2 is h in kJ/kh
htemp = xlsread('Thermodynamics Tables SI Units.xlsx','A22',
'B4:B125');
% Column 3 is u in kJ/kg
utemp = xlsread('Thermodynamics Tables SI Units.xlsx','A22',
'C4:C125');
% Column 4 is s
stemp = xlsread('Thermodynamics Tables SI Units.xlsx','A22',
'D4:D125');
% Column 5 is pr
prtemp = xlsread('Thermodynamics Tables SI Units.xlsx','A22',
'E4:E125');
% Column 6 is vr
vrtemp = xlsread('Thermodynamics Tables SI Units.xlsx','A22',
'F4:F125');

Figure 6c, MATLAB Program to Read Ideal Gas Table Data from a Microsoft Excel File

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

	Prerequisites
	Learning Objectives
	Terms
	MATLAB Functions, Keywords, and Operators
	File Formats
	Saving and Restoring MATLAB Workspace
	Reading Numeric Data from Delimited Text Files
	Reading Data from Delimited Text Files
	Writing Numeric Data to Delimited Text Files
	Loading and Saving Data from Microsoft Excel Files
	File Input for Creating the Structure Array used in the Properties of Ideal Gas Table Loop Up

